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The coronavirus disease 2019 (COVID- 19) pandemic and the measures taken by author-
ities to control its spread have altered human behavior and mobility patterns in an 
unprecedented way. However, it remains unclear whether the population response to 
a COVID- 19 outbreak varies within a city or among demographic groups. Here, we 
utilized passively recorded cellular signaling data at a spatial resolution of 1 km × 1 km 
for over 5 million users and epidemiological surveillance data collected during the severe 
acute respiratory syndrome coronavirus 2 (SARS- CoV- 2) Omicron BA.2 outbreak from 
February to June 2022 in Shanghai, China, to investigate the heterogeneous response of 
different segments of the population at the within- city level and examine its relationship 
with the actual risk of infection. Changes in behavior were spatially heterogenous within 
the city and population groups and associated with both the infection incidence and 
adopted interventions. We also found that males and individuals aged 30 to 59 y old trav-
eled more frequently, traveled longer distances, and their communities were more con-
nected; the same groups were also associated with the highest SARS- CoV- 2 incidence. 
Our results highlight the heterogeneous behavioral change of the Shanghai population 
to the SARS- CoV- 2 Omicron BA.2 outbreak and the effect of heterogenous behavior 
on the spread of COVID- 19, both spatially and demographically. These findings could 
be instrumental for the design of targeted interventions for the control and mitigation 
of future outbreaks of COVID- 19, and, more broadly, of respiratory pathogens.

human mobility | COVID- 19 | mobile phones

Following the initial COVID- 19 wave in early 2020, mainland China adopted stringent 
measures, often referred to as the “zero- COVID” strategy, to curb COVID- 19 outbreaks 
(1). This approach effectively minimized severe acute respiratory syndrome coronavirus 
2 (SARS- CoV- 2) transmission in China until the emergence of the Omicron variant in 
late 2021 (2). Subsequently, several Omicron outbreaks occurred, with a significant out-
break in Shanghai, identified in March 2022, accounting for over 600,000 confirmed 
infections (3). Comprehensive PCR testing, citywide lockdowns, and additional measures 
to restrict interpersonal interactions were implemented, ultimately containing the outbreak 
by June 2022. China eventually abandoned the zero- COVID policy 6 mo later (4).

Human mobility patterns, ranging from international travel to daily commuting, 
 significantly influence the spread of infectious diseases due to the nature of interpersonal 
interactions (5–10). Recent years have seen an exponential growth in geolocated datasets 
that provide unprecedented levels of detail to quantify human mobility (10–19). In par-
ticular, data collected from mobile devices have extensively been used in the early phase 
of the COVID- 19 pandemic to investigate transmission dynamics, estimate changes in 
contact and mobility patterns as a result of public health interventions, and forecast 
epidemic spread (11, 13, 18–21). However, limitations in the epidemiological and mobility 
data analyzed (e.g., varying COVID- 19 reporting rates by age, incomplete demographic 
information for individual travel trajectories) have left several key questions regarding the 
relationships between epidemic spread, implemented interventions, and human behavior 
and mobility unanswered. In particular, it remains unclear whether population responses 
to a COVID- 19 outbreak, as measured by travel frequency, distance traveled, and popu-
lation connectivity, vary within a city (e.g., by district area) or among demographic groups 
(e.g., by age and sex) (22).

To address these knowledge gaps, we utilized passively recorded Cellular Signaling Data 
(CSD) from over 5 million users (approximately 20% of Shanghai’s population) and 
epidemiological surveillance data collected during the SARS- CoV- 2 Omicron BA.2 out-
break in Shanghai. The exceptional scale and resolution of the human mobility data 
enabled us to analyze micro- level changes in mobility within the city and among different 
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population groups (e.g., age and sex). Additionally, the repeated 
city- wide PCR screenings provided an opportunity to examine 
the association between these behavioral shifts and high- quality 
epidemiological data in the unique context of Shanghai’s 2022 
Omicron BA.2 outbreak.

Results

Omicron BA.2 Outbreak in Shanghai and Public Health Response. 
In early March 2022, Shanghai experienced a significant outbreak 
of the SARS- CoV- 2 Omicron BA.2 variant, which rapidly 
spread among its 25 million residents. Throughout the outbreak, 
authorities conducted multiple mass PCR screenings; by the end 
of the outbreak on June 30, 2022, they had identified a total of 
627,132 SARS- CoV- 2 infections (Fig. 1A). During the outbreak’s 
initial phase, authorities implemented grid management and 
partial lockdowns at the subdistrict level. On March 28, eastern 
Shanghai, consisting of subdistricts east of the Huangpu River 
(SI Appendix, Fig. S1A), entered a population- wide lockdown, 
followed by a citywide lockdown for the rest of Shanghai on April 1.  
The citywide lockdown was lifted entirely on June 1, 2022, when 
the daily number of newly reported infections dropped to 10. 
Further information on the public health response can be found 
in Materials and Methods, SI Appendix, Fig. S2 and Table S2.

Changes in Frequency of Travel, Distance Traveled, and Mobility 
Network Community Structure over the Course of the Outbreak. 
We quantified spontaneous and intervention- induced behavioral 
changes of the Shanghai population in terms of their daily 
mobility patterns based on CSD. Subsequently, we employed the 
Infomap method (23) to identify community structures within the 
mobility networks. Further details can be found in the Materials 
and Methods section and SI Appendix, section 1.

Pre- Outbreak Phase. During the 2 wk before the Omicron 
outbreak began, we estimated an average of 1.365 trips per 
person per day, corresponding to a total of 7.03 million trips per 
day (Fig. 1A). Approximately, 33.4% of the cells in the central 
urban areas accounted for 80% of the total mobility in Shanghai 
(Fig. 1B). The median distance traveled was 6.035 km; trips within 
10 km accounted for 66.7% of all trips (Fig. 1 C and D). We 
identified 40 total communities, with a sizable core community 
(~8% of Shanghai’s land area) at the city’s center, surrounded by 
peripheral communities outside the Shanghai metropolitan area 
(Fig. 2A and SI Appendix, Fig. S3 A and F).

Targeted Interventions Phase. After the implementation of 
public places closures, school closures, mass screenings, and travel 
restrictions beginning on March 2, the number of daily trips per 
person decreased from 1.365 to 0.895 (Fig.  1A). Long- distance 
trips, defined as those exceeding 30 km, experienced the most 
substantial decrease, dropping by approximately 47.5% compared 
to the pre- outbreak phase. This reduction brought the median travel 
distance down to 5.090 km (P < 0.0001; see Fig. 1 C and D and 
SI Appendix, Fig. S5A). By the end of the targeted interventions 
phase, the number of communities within the mobility network had 
increased to around 50 (Fig. 2B and SI Appendix, Fig. S3 B and F).

Citywide Lockdown Phase. After a citywide lockdown was 
implemented on April 1, mobility decreased by 87.3% compared 
to the pre- outbreak phase and remained stable for about a month 
(Fig.  1A). The median travel distance decreased to 1.205 km  
(P < 0.0001), with 79.0% of trips spanning less than 3 km (Fig. 1 C  
and D and SI Appendix, Fig. S5A). The initial 40 communities 
fragmented into 221 smaller ones, effectively dismantling the 
core- periphery structure that connected various parts of the city 
(Fig. 2C and SI Appendix, Fig. S3 C and F).

Pre−outbreak Targeted interventions Citywide lockdown Targeted lifting of 
interventions Reopening

0

0.5

1

1.5

2

0

5

10

15

20

25

30

Feb 20 Mar 1 Mar 10 Mar 20 Apr 1 Apr 10 Apr 20 May 1 May 10 May 20 Jun 1 Jun 10 Jun 20 Jun 30

N
um

be
r o

f d
ai

ly
 tr

ip
s 

pe
r p

er
so

n

N
ew

 infections (× 1,000)

Population flows
10,000+
5,000
4,000
3,000
2,000
1,000
1

Pre−outbreak

0

25

50

75

100

0

2

4

6

8

Feb 20 Mar 1 Mar 10 Mar 20 Apr 1 Apr 10 Apr 20 May 1 May 10 May 20 Jun 1 Jun 10 Jun 20 Jun 30
Date

Pr
op

or
tio

n 
of

 fl
ow

s 
(%

) M
edian distance (km

)

Distance (km) [1,3) [3,5) [5,10) [10,30) [30,50) 50+

0

0.2

0.4

0.6

0.8

1

1 10 100
Travel distance, D (km)

C
um

ul
at

ive
 d

is
tri

bu
tio

n 
(p
�

D
)

Pre−outbreak
Targeted interventions
Citywide lockdown
Targeted lifting of 
interventions
Reopening

A B

C D

Fig. 1. Changes in population flows and travel distance in Shanghai. (A) Changes in number of daily trips per person and number of new infections reported 
from February 15 to June 30, 2022. Grey bars represent the daily reported infections. (B) The geographic distribution of population trips during the pre- outbreak 
phase. The color intensity represents the number of daily trips occurred in each cell, which is calculated as the sum of the incoming trips of a given cell and the 
outgoing trips of that same cell. (C) The proportion of daily trips by different distances travelled (filled colors) and median distance of daily trips (dotted line) 
from February 15 to June 30, 2022. (D) The cumulative probability distribution against distance (log) of daily trips across all five phases, where P is defined as the 
probability of traveling between locations exceeding a certain distance. Each line represents the probability distribution per phase.
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Targeted Lifting of Interventions Phase. Coinciding with the 
partial lifting of interventions on May 1, data revealed a gradual 
increase in mobility, reaching 19.3% of pre- outbreak levels 
(Fig.  1A). Meanwhile, the median distance traveled per day 
rose to approximately half of what it was in the pre- outbreak 
phase (P < 0.0001; see Fig. 1 C and D). The number of distinct 
communities decreased to 109 with a ramping up of the strength 
of connections across different cells of the city (Fig.  2D and 
SI Appendix, Fig. S3 D and F).

Reopening Phase. Upon lifting most interventions on June 1, 
we observed an immediate resurgence in mobility flows, reaching 
90.5% of pre- outbreak levels in under a week (Fig. 1A). Short- 
distance trips (<3 km) increased more rapidly, exceeding pre- 
outbreak levels, while long- distance trips only recovered to about 
half of their pre- outbreak frequency. By June 30, the median trip 
distance had just returned to its level during targeted interventions 
(5.105 km vs. 5.090 km), although the number of daily trips had 
almost reverted to pre- outbreak figures (Fig. 1A and SI Appendix, 
Fig. S5A). Ongoing mandatory COVID- 19 tests for travel outside 
residential areas within the city, along with additional policies, 
prevented the community structure from fully reverting to its pre- 
outbreak state (54 vs. 40 communities) (Fig. 2E and SI Appendix, 
Fig. S3 E and F).

Spatially Heterogeneous Impact of the Epidemic and the Adopted 
Interventions on Population Mobility. Before the lockdown of 
eastern Shanghai, mobility reductions were heterogeneous across 
cells, with larger reductions observed in cells severely hit by the 
epidemic (Pearson � = 0. 115 , P < 0.001; see Fig. 3 A and B). 
Cells with more than 50 infections exhibited an average mobility 
reduction of 78.7%, while the reduction was just 13.0% for cells 
without infections (P < 0.0001; see Fig. 3B). During the targeted 
lifting of interventions phase, particularly after May 16 when 
public transportation began to resume, strict mobility- restricting 
policies persisted in high- risk areas with sustained incidence rates. 

In contrast, substantial rebounds in mobility were observed in   
low- risk cells, encompassing both suburban and rural areas 
of Shanghai (Fig.  3 C and D). The recovery of mobility was 
significantly associated with the number of new infections reported 
in the cells (Pearson � = − 0. 096 , P < 0.001). Specifically, cells 
with more than 50 infections had a very low recovery of mobility 
(12.6% on average), while the recovery reached 84.1% for cells 
without infections (P < 0.0001; see Fig.  3D). These analyses 
were performed under the assumption that the mobility of the 
population in a given day was affected by the status of the epidemic 
and interventions in the same day.

Changes in Frequency of Travel, Distance Traveled, and Mobility 
Network Community Structure by Demographic Characteristics. 
To calculate the mobility and community structure by demographic 
characteristics, we analyzed mobility flows separately by age group 
and sex. The range of mobility was measured by the proportion of 
the area covered by the top 10 communities (�) , the total number 
of identified communities (NC ) , and the number of communities 
covering more than 10 cells 

(
NCg≥10

)
 . Based on the individual- 

level data of infected individuals reported between March 1 
and March 25 (targeted interventions phase), we analyzed the 
relationship between mobility patterns and the incidence of SARS- 
CoV- 2 as well as the number of cells with reported infections by 
demographic characteristics.

During the pre- outbreak phase, the number of daily trips per per-
son and distance travelled were highest for adults aged 30 to 59 y 
(1.457 trips, P < 0.0001; 6.195 km, P < 0.0001) and lowest for older 
adults aged 70+ (0.596 trips, P < 0.0001; 4.350 km, P < 0.0001) 
(Fig. 4A and SI Appendix, Fig. S5B and Tables S4 and S5).  
During the targeted interventions phase, for all age groups, higher 
mobility was significantly correlated with higher infection inci-
dence (Pearson � = 0. 904 , P = 0.035), and longer travel distances 
were correlated with larger infected areas (Pearson � = 0. 894  , 
P = 0.040; SI Appendix, Tables S7 and S8). Specifically, compared 

Fig. 2. The network structural changes during each phase. (A–E) Community structures during the pre- outbreak, targeted interventions, citywide lockdown, 
targeted lifting of interventions, and reopening phases, respectively. Each node corresponds to a community, and the center of the node coincides with the 
centroid of the community. The size of each node is proportional to the area (number of cells) of the community. The width of the directed arrow is proportional 
to the flows between communities. More information about flows within the same community can be found in SI Appendix, Fig. S4.
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with middle- aged adults aged 30 to 59, individuals 70+ y old 
 travelled 62.8% less frequently (P < 0.0001) and 25.9% shorter 
distances (P < 0.0001), and correspondingly had a 44.3% lower 
incidence (P < 0.0001) and 71.6% less infected cells (P < 0.0001). 
Older adults aged 70+ also showed most reduction of mobility in 
this phase (P < 0.0001; SI Appendix, Fig. S5C). Neither travel dis-
tance nor travel volume was obviously different across all age groups 
during the citywide lockdown, although the difference is statisti-
cally significant among all age groups due to large sample size; 
however, they quickly rebounded to the pre- outbreak level during 
the reopening phase, of which individuals 70+ y old had the lowest 
mobility recovery (P < 0.0001; see Fig. 4 B and C and SI Appendix, 
Fig. S5C). Different age groups also presented various mobility 
network patterns across phases (Fig. 4 D–G). Middle- aged groups 
(30 to 59 y old) visited substantially more locations than younger 
or older groups (P < 0.0001); for example, the average degree ⟨k⟩  
for middle- aged groups was 40 times that for 16 to 18 y old. 
Similarly, the mobility networks of middle- aged groups were more 
densely connected, with higher transitivity (adjacent neighboring 
locations, P < 0.0001) (SI Appendix, Table S6). This difference was 
more prominent in community structures. For example, younger 
and older groups had smaller and less connected communities 
( � = 5. 913% , NC = 319; � = 6. 527% , NC = 369, respectively), 
whereas middle- aged groups had fewer well- connected communi-
ties covering large areas ( � = 37. 250% , P < 0.0001; NC = 141, 
P < 0.0001) (SI Appendix, Fig. S6). The connections of the mobility 
networks for all age groups were reduced by lockdown and were 
not fully recovered during the reopening phase (Fig. 4 E and F).

Males were associated with longer travel distance (6.080 km 
vs. 5.815 km, P < 0.0001) and higher daily trips (1.446 trips vs. 
1.212 trips, P < 0.0001) than females during the pre- outbreak 
phase (Fig. 4A and SI Appendix, Fig. S5D and Tables S4 and S5).  
Males travelled 30.3% more frequently (P < 0.0001) and 3.9% 
longer distances (P < 0.0001), which corresponded to 9.7% 
higher incidence (P < 0.0001) and 7.3% more infected cells  
(P = 0.089) than females during the targeted interventions phase 
(SI Appendix, Tables S7 and S8). Males also showed less reduc-
tion of mobility in this phase (P < 0.0001; SI Appendix, 
Fig. S5E). The mobility patterns remained comparable across 
sexes during citywide lockdown (Fig. 4B). Females had a lower 
recovery of mobility during the reopening phase (P < 0.0001; 
SI Appendix, Fig. S5E). Sex was also a strong factor affecting the 
mobility network patterns. During the pre- outbreak phase, 
males had a greater range of mobility and smaller community 
sizes ( � = 37. 161% , NC = 147) than females ( � = 31. 033% , 
NC = 207), indicating that males traveled more frequently  
(P < 0.0001) and distantly (P < 0.0001) than females. This dif-
ference persisted across all epidemic phases (Fig. 4 D–F and 
SI Appendix, Fig. S6).

Additional Analyses at Different Spatial and Temporal Reso
lutions. Additionally, we compared changes in frequency of daily 
trips at the grid, subdistrict, and district levels. Trips between 
subdistricts or districts exhibited higher reduction in mobility 
during the citywide lockdown for the subdistrict (91.3%, 
P < 0.0001) and district levels (95.4%, P < 0.0001) compared to 

Fig. 3. Impact of epidemic and interventions on the changes in mobility. (A) The geographic distribution of infections and mobility reduction during the targeted 
interventions phase. The upper map represents the cumulative number of infections at the grid level as of March 27 (i.e., before the lockdown of eastern Shanghai). 
The lower map represents the mobility reduction, which is computed as the subtraction of daily trips on March 27 from the pre- outbreak mobility level, divided 
by the pre- outbreak mobility level. (B) The mobility reduction as a function of the number of new infections in the cells during the targeted interventions phase. 
The bar represents the mean value, while the horizontal line represents 50% quantile intervals. Each dot corresponds to the result for each cell. Note that the 
dots with a negative mobility reduction were not displayed. (C) The geographic distribution of infections and mobility recovery during the targeted lifting of 
interventions phase. The upper map represents the cumulative number of infections at the grid level from May 1 to May 31. The lower map represents the 
mobility recovery, which is computed as the daily average trips between May 16 and May 31 divided by the pre- outbreak mobility level. The recovery may be 
beyond 100% if the daily trips during May 16 and May 31 are higher than the pre- outbreak mobility level. (D) The same as panel B, but for the targeted lifting of 
interventions phase. Note that the dots with a mobility recovery beyond 100% were not displayed.
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the grid (1 km × 1 km cells) level (87.5%) (SI Appendix, Fig. S7A 
and Table S9). We also observed a less marked reopening rebound 
of the mobility, reaching 79.1% and 69.2% of the pre- outbreak 
flows, respectively, for the subdistrict (P < 0.0001) and district 
(P < 0.0001) levels compared to 91.2% at the grid level. We then 
compared the proportion of daily population flows at different 
spatial resolutions, including inter- flow and intra- flow, where 
the inter- flow denotes the population flows between cells (or 
subdistricts, districts) and the intra- flow represents population 
flows within the same cell (or subdistrict, district). Our results 
show significantly different patterns across different resolutions for 
each phase (P < 0.0001; SI Appendix, Fig. S7 B–D). Low- resolution 

mobility data may thus mask the variability in the dynamics of 
mobility flows.

We further investigated alterations in mobility and commuting 
patterns at various temporal resolutions. Trips to or from outside 
Shanghai are not considered in this study. The periodic weekly 
commuting pattern swiftly rebounded during the reopening phase, 
even though the frequency of travel, distance traveled, and com-
munity structure had not fully recovered. Notably, we observed 
significant differences in travel frequency, distance traveled, and 
community structure of mobility networks between weekdays and 
weekends as well as at different times of the day. For more details, 
refer to SI Appendix, section 4 and Figs. S7–S9 for details.
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Fig. 4. Changes in frequency, distance, and community structures of mobility network by age and sex. (A–C) Mean number of daily trips per person and median 
distance travelled by age group and sex during the pre- outbreak, citywide lockdown, and reopening phases. The mean number of daily trips per person and 
95% CIs on the mean are calculated by bootstrap sampling. The bar corresponds to the mean or median value, while the horizontal line represents 95% CI 
(quantile interval) for number of daily trips and 50% CI (quantile interval) for travel distance. The horizontal line for trips may not be visible due to very narrow 
CIs. Summary of frequency and distance across phases is shown in SI Appendix, Tables S4 and S5. (D–F) The left part of each panel represents the proportion 
� , i.e., the top- 10 communities in terms of area (km2) for each category to the total area (7,355 km2). The right part of each panel represents the total number 
of identified communities NC  , where the filled portions represent the number of communities that spans more than 10 cells NC

g≥10 . The community detection 
process was performed 100 times to calculate the average � , NC  , NC

g≥10 and their 95% CIs (quantile intervals). The bar corresponds to the mean value, while the 
horizontal line represents 95% CI. (G and H) The degree distribution of the mobility network across phases by age group and sex. Summary of the topological 
features of the mobility networks by age group and sex is shown in SI Appendix, Table S6.
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Discussion

Our analysis provided an in- depth assessment of the behavioral 
changes within the Shanghai population in response to the 2022 
SARS- CoV- 2 Omicron BA.2 outbreak, considering fine spatial 
and temporal scales as well as demographic characteristics.

Pre- outbreak mobility was unevenly distributed across the city, 
with 33.4% of cells located in the center of Shanghai accounting 
for 80% of all trips. This is consistent with the geographical dis-
tribution of population density in Shanghai. The crowd movement 
during the pre- outbreak phase reveals the specific socio- economic 
distribution and commuting patterns in Shanghai. Mobility 
reductions were also spatially heterogeneous from the targeting 
interventions phase through the reopening phase, as different pol-
icies were adopted according to the local epidemic situation. 
Larger reductions were measured in cells more severely hit by the 
epidemic. These findings hint to possible spontaneous behavioral 
changes where individuals witnessing a large number of infections 
reported in their cells might have limited their mobility beyond 
the mandated restrictions compared with those living in less 
affected cells. When the citywide lockdown entered into effect, 
the situation became homogenous as mobility reached its mini-
mum level in all areas.

Throughout the outbreak, the frequency of travel and distance 
traveled generally adhered to the timeline of interventions imple-
mented to combat the spread of SARS- CoV- 2. Mobility reached 
its lowest level during the citywide lockdown phase, with an aver-
age of 0.174 trips per day per person and 1.205 km traveled. The 
community structure identified by the mobility flows followed 
the same pattern as well, with the population fragmenting into 
an increasing number of smaller communities as the level of inter-
vention intensified. Mobility and community size quickly 
rebounded within the first week after interventions were lifted, 
although in the following month, they had not fully recovered to 
pre- outbreak levels. During the outbreak, changes in behavior 
were spatially heterogenous within the city and directly associated 
with both the epidemic situation and interventions. We observed 
that males and individuals aged 30 to 59 y old traveled more 
frequently, traveled longer distances, and their communities were 
more connected, which were associated with higher incidence of 
SARS- CoV- 2 infections and larger infected areas.

In late May, public transportation was partially reopened, and 
individuals living in less affected cells were allowed conditional 
trips (e.g., one individual per household per day was allowed to 
buy necessities). During the reopening phase, we found that 
mobility quickly rebounded within the first week (although it did 
not return to the pre- outbreak level). This recovering trend is 
substantially different from some European and US locations 
where the rebound was much slower, possibly due to the persis-
tence of the epidemic or different levels of lockdown fatigue 
(12, 17, 24, 25). Within the Shanghai population, we found a 
slower mobility recovery during reopening among older adults 
(70+ y), which suggests possible spontaneous choices to limit 
mobility to minimize the risk of infection given widespread infor-
mation about the increased risk of developing severe symptoms by 
age if infected. At the same time, it is also possible that the policy 
of requiring negative PCR results within 72 h to travel within the 
city (but outside their residential area) may have contributed to a 
reduced mobility among older adults as they are less likely to use 
smart phones to show proof of negative test result (26).

One interesting aspect of our analysis is that we have observed 
a spatially heterogeneous response to the outbreak. Although this 
was already found in previous country- level analyses (17, 27–29), 
here we are observing marked differences at the within- city scale. 

Our analysis also shows that at the within- city scale, results are 
generally consistent if data are analyzed at 1- km2 resolution or 
using administrative boundaries (e.g., district, subdistrict), 
although quantitative differences do exist, highlighting the impor-
tance of selecting the appropriate spatial level of aggregation of 
mobility data depending on the focus research question. Moreover, 
we found that interventions altered not only the number of trips 
but also their length. In particular, after the lockdown was lifted, 
we observed an increase in trips under 3 km as compared to 
pre- outbreak mobility. These heterogeneous patterns may be useful 
for informing spatially targeted interventions at the within- city 
scale. For example, targeted spatial distribution of vaccine doses 
and antiviral treatments, screening hubs, and lockdown areas that 
cover different spatial sizes could be instated depending on the 
mobility of the population.

While mobile phone data are widely used to quantify human 
mobility, there are potential sources of inaccuracy to consider, 
such as i) population representativeness (e.g., by age), ii) geograph-
ical coverage, and iii) heterogeneity in user activity. First, our study 
may be subject to selection bias, as we analyzed the mobility of 
mobile phone owners, which could exclude or underrepresent 
young children and older adults (SI Appendix, Fig. S1H and sec-
tion 1). However, despite this affecting our population- level 
results, we have provided an assessment by age and sex that does 
not suffer from this bias. Second, we analyzed data representing 
approximately 20% of Shanghai’s population, with a median cov-
erage by subdistrict of 19.5% (interquartile range: 14.9 to 24.7%) 
(SI Appendix, Fig. S1C). Third, by relying on passively recorded 
CSD instead of actively recorded signals, we have mitigated the 
bias of heterogeneity in user activity. Another limitation is that 
the number of infections disaggregated by age and sex is available 
to us only until March 25, 2022. This constraint limited our 
comparison between epidemiological data and human mobility 
patterns with a stratification by sex and age to the initial phase of 
the outbreak. It is also possible that a mobile phone was used by 
more than one household member, thus affecting our results dis-
aggregated by population characteristics. However, official statis-
tics from the Ministry of Industry and Information Technology 
corroborate the immense ubiquity of mobile phones within 
Shanghai’s population, with a staggering penetration rate of 
178.1% as of 2022 (30). Furthermore, the prevalence of mobile 
payment systems in China has almost replaced the use of cash and 
necessitates users to link their authentic identity information with 
their cell phone numbers. Finally, it is important to remark that 
the analyzed mobility and epidemiological data are not linked at 
the individual level. As such, only population- level analyses were 
possible to connect the two datasets.

In summary, behavioral changes during the 2022 Omicron 
BA.2 outbreak were heterogeneous, both spatially and demograph-
ically. By shedding light on the varied responses among population 
groups, our findings can be instrumental in guiding the develop-
ment of spatially targeted interventions to mitigate potential new 
surges in COVID- 19 cases, as well as fostering preparedness for 
future respiratory infectious disease outbreaks.

Materials and Methods

Data Sources.Mobile phone data. CSD were provided by China Unicom, one of 
the largest national mobile carriers in China, which accounts for approximately 
one- third of all active mobile phone users in Shanghai. Active signaling data 
were recorded during events such as phone calls, text messages, device power 
on/off, or tower switches, while passive signaling data captured the user’s location 
approximately every 30 min, provided the phone was turned on. The original CSD 
data include the timestamp of each event and a unique identifier for the mobile D
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phone tower routing the activity. The demographic characteristics of each phone 
user are available to the service provider based on user registration information. 
The analyzed data have been anonymized and aggregated by the provider at a 
temporal resolution of 1 h, spatial resolution of 1 km × 1 km (grid level), and 
demographic characteristics (age and sex) of the phone users. Then, we received 
the data from the provider as a set of matrices containing the number of users 
traveling between each pair of cells for each population group (age, sex) and hour 
of the day. The data span from February 15, 2022, to June 30, 2022, and consist 
of an average of 5.04 million phone users (20% of the total population) per day 
throughout the study period.
Epidemiological data. Daily aggregated data on the number of infections and 
individual- level data (line list) of all SARS- CoV- 2 infections were extracted from 
multiple publicly available official data sources (websites of municipal health 
commission and local government media) as detailed in our previous study (3). 
The resulting line list contains all reported infections with the following primary 
variables: date of official reporting, residential location (address, district, and 
subdistrict), age, and sex. The residential address of each reported infection is 
available throughout the study period (February 15, 2022, to June 30, 2022), 
while the age and sex information is available only for infected individuals 
reported between March 1 and March 25, 2022. To protect privacy, residential 
addresses of the infected individuals were first geocoded, then aggregated at 
the cell level, so that the number of infections can be linked with the population 
flows at the grid level.

Timeline of the Outbreak and Public Health Response. After the outbreak 
was initially reported on March 1, 2022, a series of non- pharmaceutical inter-
ventions (NPIs) were implemented to suppress transmission. Schools closed on 
March 12. From March 16 to 27, Shanghai introduced grid management at the 
subdistrict level by dividing subdistricts into high- risk and non- high- risk areas, 
based on factors such as the epidemiological situation (number of infections and 
cases), population density, social characteristics, and economic activity. High- risk 
areas underwent one or two rounds of population- wide PCR screening within 
48 h, accompanied by lockdown orders. Non- high- risk areas conducted a single 
round of mass screening.

On March 28, eastern Shanghai (comprising subdistricts east of the Huangpu 
River; SI Appendix, Fig. S1A) entered a population- wide lockdown, followed by 
the rest of Shanghai on April 1 (citywide lockdown). Key enterprises and public 
transportation began resuming operations in May, with the citywide lockdown 
fully lifted on June 1. However, some restrictions persisted throughout June, 
limiting population movement. For instance, entering public places and trans-
portation required proof of a negative PCR test result within 72 h, and restaurants 
prohibited dine- in service until June 29. Additional details on the public health 
response can be found in SI Appendix, Fig. S2 and Table S2.

Definition of the Five Phases of the Outbreak. For the purposes of this 
analysis, we categorized the outbreak into five phases based on the imple-
mented interventions and the epidemic situation. The first phase, known as 
the “pre- outbreak phase,” spanned from February 15 to February 28, 2022. 
During this period, only a small number of sporadic and locally transmitted 
cases were recorded, and people’s daily activities remained largely unaf-
fected. The period from February 1 to February 14 was excluded from our 
analysis as it is overlapped with the Chinese New Year holiday. The second 
phase is the “targeted interventions phase”, covering the period from March 
1 to March 31, when spatially targeted NPIs were deployed to suppress 
transmission. The third phase is the “citywide lockdown phase”, covering the 
period from April 1 to April 30, when the entire city was in lockdown. The 
fourth phase is the “targeted lifting of interventions phase”, covering the 
period from May 1 to May 31, when restrictions started to gradually scale 
down in specific areas of the city. The last phase is the “reopening phase”, 
covering the period from June 1 to June 30, when policies started to be lifted 
throughout the entire city.

Frequency and Distance of Daily Trips. A trip was counted when a user 
switched to one or more new cell towers, until the user became stationary again 
(no further switch for approximately 30 min). We only consider trips between 
different cells of the grid. We defined as Tij (t)   the number of trips from cell j to 
cell i at time t. The average number of trips per person at time t was thus defined 

as ⟨T⟩(t) = T (t)∕U(t)   , where T(t) =
∑

i≠j Tij(t)   represents the total number of 
trips at time t, and U(t) represents the number of active users at time t (which 
dynamically changes over time due to the flow of travelers to and from Shanghai). 
We estimated aggregated mobility flows (directed) using a grid comprising 7,355 
cells that covered the entire city of Shanghai, including all of its 16 districts and 
216 subdistricts (SI  Appendix, Fig.  S1A). To quantify to what extent mobility 
changed during the outbreak, we compare the mobility during different epi-
demic phases to a baseline phase with pre- outbreak mobility. The geographical 
distance between the cell centroids is assumed to estimate the travel distance. 
Estimates were disaggregated by age, sex, day type (i.e., weekday and weekend), 
and time of the day (i.e., daytime and nighttime).

Definition of the Mobility Network and Community Detection. To inves-
tigate structural changes in the mobility network throughout various stages of 
the outbreak, we reconstructed the mobility network GP for each phase P . In this 
network, each node represents a cell of the grid, with directed edges connecting 
nodes where users move between cell i  and cell j  . The degree of node i  is then 
defined by ki = kin

i
+ kout

i
 , where kin

i
=

∑
jCji , and kout

i
=

∑
jCij , where Cji indi-

cates whether node j is connected to node i or not (i.e., users travel from node j to 

node i). The average degree ⟨k⟩ is then calculated as ⟨k⟩ =
�n

i=1
ki ∕n , where 

n is the number of nodes. The number of days in each phase P is denoted by DP . 
Subsequently, the edge weights wij(P) are calculated as the average daily number 
of trips between cells during this phase as wij(P) =

∑
t∈DP

Tij(t)∕�Dp� . We exclude 
edges whose average weight is below the threshold wij(D) < 1.

We used the Infomap method (23) to detect the community structures in 
the mobility network. Briefly, considering the sequence of communities visited 
by a random walker who will tend to linger within communities, the algorithm 
detects the community based on the probability distribution of random walks. 
A community partition is regarded as good if the description of that sequence 
requires relatively little information, in the sense of Shannon entropy, and the 
Infomap method is built to optimize the minimum description length of the ran-
dom walk on the network. Compared with other methods, this approach retains 
the information about the directions and weights of the edges, which has the 
advantage of being flexible for finding community structures on large weighted 
and directed networks (31, 32). To assess community detection, we calculate the 
modularity (33). As an index of the difference of connectivity within a commu-
nity versus between communities, a relatively lower modularity value indicates 
a higher strength of connections between different communities rather than 
within the same community.

The same methods were used to analyze the mobility networks and community 
structures by demographic characteristics by subsetting the dataset to consider 
only mobility flows for the analyzed population group.

Statistical Analysis. The mean number of daily trips per person and 95% CI 
(quantile interval) on the mean were calculated by bootstrap sampling for 100 
times. Then number of daily trips per person among epidemic phases, age, sex, 
day type, and time of the day was compared by use of the two- sample t test. 
Similarly, a Kolmogorov–Smirnov test was used to compare the distribution of 
travel distance and degree of mobility network. The community detection process 
was performed 100 times to calculate the mean proportion of the area covered 
by the top 10 communities (�) , the total number of identified communities 
(NC ) , the number of communities covering more than 10 cells ( NCg≥10) , and 
their 95% CIs (quantile intervals). Then two- sample t test was used to compare 
the community structures of the mobility network. A Pearson correlation coeffi-
cient was estimated to test the association between epidemiologic metrics and 
mobility. The statistical significance level is set at 5%, which would be adjusted 
using Bonferroni correction for multiple comparisons.

Ethical Considerations. This study was approved by the institutional review 
board of the School of Public Health, Fudan University (IRB# 2022- 05- 0969).

Data, Materials, and Software Availability. The code is available at https://
github.com/Juanjuan2023321/Shanghai- mobility- PNAS. Mobile phone data 
are proprietary and confidential. We obtained access to these data from the 
SmartSteps company controlled by China Unicom within the framework of 
the COVID- 19 research project. To safeguard the privacy of the users, CSD was 
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aggregated over time and space scale and by users’ age group and sex (34). 
Raw individual- level and aggregated grid- level mobility data cannot be made 
publicly available to preserve privacy. However, readers can request the raw 
mobility data from the data provider—SmartSteps (34), and grid- level data to 
reproduce the findings of this study can be requested from the corresponding 
author.
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